
yarn mechanics-fragmentation process 
ABSTRACT  
Often, fibers with significantly different elongations-to-break are combined in blended yarns. During yarn extension, 
the low elongation-to-break (LE) fibers undergo a fragmentation process, whereby the LE fibers develop multiple 
breaks along their length. The interaction between the LE fragments and the high elongation-to-break (HE) fibers is 
key to the load-extension behavior of such blended yarns. In this work, a micro-mechanical model for the interactions 
in a mixed array of elastic fibers representing the microstructure of a blended yarn undergoing axial extension is 
adopted and modified for the assumption of hexagonal fiber packing. The present results, which represent essentially 
an upper bound on the mechanical behavior that can be attained by increasing packing density, are compared to 
previous results for the assumption of square packing. It is shown that increased packing density provides for better 
reinforcement of the yarn by the LE fragments. 
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1. INTRODUCTION 
There is renewed interest in modeling the mechanical behavior of blended yarns, as reflected in recent papers by 
Realff et al. (2000), Godfrey and Rossettos (2001), and Rossettos and Godfrey (2002). While the works by principal 
authors Godfrey and Rossettos consider blended yarn behavior at 
the microstructural level, Realff et al. develop a stochastic model that treats the entire yarn. In general, these works 
aim to investigate how blended yarn load-extension behavior is affected by the interactions occurring between the 
constituent LE and HE fibers. A key issue is the possible exploitation of beneficial “hybrid effects” whereby the LE 
fibers may be used to carry 
loads in the yarn at strains exceeding the failure strain of a homogenous LE fiber yarn (Rossettos and Godfrey, 2002). 
Realff et al. (2000) and Godfrey and Rossettos (2001) discuss the successive fragmentation of LE fibers that occurs 
in blended yarns. These phenomena have close parallels in the mechanics of fiber-reinforced composites. 
Recognizing this, some authors have used twisted blended yarns as surrogates to elucidate the behavior of hybrid 
fiber composites (Monego et al., 1994; Pan et al., 1998). Clearly, research can be adapted in the opposite direction as 
well, and given the wealth of research activity over several decades in fiber-reinforced composites, blended yarn 
mechanics is well positioned to benefit. In particular, sophisticated statistical theories developed for fiber composites 
could be modified, using results and insights attained in the present and referenced works, to develop predictive 
theories for the stress-strain and strength behavior of blended yarns. Representative works in statistical theories for 
composites, treating complex mechanistic aspects such as fiber fragmentation, frictional slip of fibers, matrix cracking, 
and matrix yielding, include Curtin (1991, 1993), Nuemeister (1993), Phoenix et al. (1996), and Hui et al. (2000). 
The present work concerns the extension of blended yarns undergoing fragmentation of the LE fibers. In the case that 
the LE fibers are significantly stiffer than the HE fibers, the fragmentation of the LE fibers may lead to a large drop in 
tension on the yarn as the yarn is extended in the post-fragmentation regime. For high strength yarns, it is desirable, 
therefore, that the LE fragments continue to reinforce the yarn and contribute to the overall stiffness and load-carrying 
ability. This is an important problem commercially because of the large quantities of blended staple yarns produced 
for apparel. However, tailoring of strength and stiffness properties through intimate blending of different fiber types 
may be useful in technical textiles as well. In high performance ropes, for example, it may be possible to design a 
rope with high initial stiffness in combination with high toughness and elongation-to-break by blending stiff LE fibers 
with compliant HE fibers. Yarns created with such a combination of properties may also have application to woven 
fabrics used for soft body armor. 
In this paper, we adopt a micromechanical model for the extension of a hybrid fiber array representing the 
microstructure of a hybrid yarn undergoing fragmentation of the LE fibers (Godfrey and Rossettos, 2001) and modify 
the model for the assumption of hexagonal fiber packing. The parallel mixed array of elastic fibers consists of a small 
fraction of relatively high-modulus, LE fibers dispersed among HE fibers. The LE fibers are assumed to break into 
fragments that slip relative to neighboring fibers in regions near the fragment tips; analysis of frictional slip forces 
acting in the slip region is motivated by results for yarn internal stresses (Hearle et al., 1969, pp. 175-212). The model 
is used to investigate the contribution of the LE fragments to the load-carrying ability of the fiber array. The present 
results are compared to previous results for the assumption of square packing. It is shown that increased packing 
density provides for better reinforcement of the yarn by the LE fragments. In addition, peak strains in HE fibers are 
shown to be reduced in hexagonal versus square packing, suggesting that more densely packed yarn microstructures 
may sustain higher extension prior to complete failure. 
2. MICROMECHANICAL MODEL 
We adopt a micromechanical model, introduced by Godfrey and Rossettos (2001) under the assumption of square 
fiber packing. In this section, the main elements of the model are summarized, and the model is specialized for the 



hexagonal packing assumption. 
Consider a uniformly blended twisted yarn composed of a small fraction of LE fibers dispersed among HE fibers. The 
yarn is assumed to possess the well accepted idealized helical structure (Hearle et al., 1969, pp. 65-67) where the 
fibers lie in coaxial concentric layers and follow helical paths. The tangent of the helix angle varies linearly with radial 
position in the yarn from 
zero at the center to a maximum on the yarn surface. Directing our attention to the central region of the yarn, the 
fibers are nearly parallel to the yarn axis. Fibers near the yarn's center, therefore, experience the highest strains 
during yarn extension and yarn rupture usually initiates in the central region. 
As yarn tension increases, lateral compression drives the local packing toward a regular periodic structure. However, 
fiber migration, the tendency for the twisted yarn under tension to assume a circular cross-section, and size and 
shape differences between the LE and HE fibers necessitate that the fiber array deviate from a perfect lattice through 
packing flaws. For parallel fibers with identical circular cross-sections, hexagonal packing provides the maximum 
possible fiber packing density. As such, the behavior exhibited by hexagonally packed fiber arrays may be regarded 
as an upper bound on the mechanical behavior of fiber arrays with increasing fiber packing densities. 
Consider a hexagonally packed mixed array of parallel linearly elastic fibers representing the local microstructure of 
the yarn near the yarn's center. For hybrid yarns containing sufficiently small fractions of LE fibers, we assume the LE 
fibers are far enough apart that their regions of influence do not overlap. The LE fibers are assumed to develop evenly 
spaced breaks such that they form fragments of uniform length 2 l. Based on these assumptions, we investigate the 
behavior of a finite section of the fiber array of length l comprised of one-half of a single LE fiber fragment embedded 
in the center of a hexagonal region of HE fibers. This finite section is essentially a unit cell of the fiber array. The x-
coordinate axis is parallel to the fiber direction, with the origin placed at a LE fragment tip. The LE and HE fibers are 
assumed to be approximately transversely isotropic. Based on similar calculations with square packing (Godfrey and 
Rossettos, 2001), results are not particularly sensitive to number of layers of HE fibers surrounding the LE fragment 
that are included in the unit cell. In this work, three layers of HE fibers are included in the hexagonal unit cell, Figure 1. 
Due to symmetry, only six fibers need to be independently represented in the model; these are shown in red (LE 
fragment) and white (HE fibers) in Figure 1. The fiber array is extended in the x-direction to a nominal strain a. 

 

The general form of the fiber equilibrium equation in a square-packed array is derived in detail by Godfrey and 
Rossettos (2001). To derive equations for the six independent fibers in the hexagonal unit cell (Figure 1) we proceed 
as follows, starting with the center LE fragment. The fiber array is laterally compressed, due to the interaction of yarn 
tension and twist, so that fiber-to-fiber load transfer may occur via surface friction. Along the contact line with each of 
its six abutters, a contact "shear flow" is applied to the LE fragment (the LE fragment is denoted fiber number 0). The 
term "shear flow" is used here to connote a force per unit length. Figure 2 illustrates axial equilibrium of an arbitrary 
fiber under the influence of the shear flows from abutting fibers. HE fibers each have an effective axial stiffness E*A* 
and the LE fiber has an effective axial stiffness EA. We denote the shear flow from fiber 1 to fiber 0 along the contact 
line as q1,0 and take the convention that positive shear flows to a fiber act in the positive x-direction on that fiber. By 
symmetry, fiber 0 experiences six 
identical shear flows from its interaction 



with its six abutters. Introduce u„ as the  
average axial (x-direction) displacement in  
fiber n at position x. It is convenient to take  
as the displacement reference the position of  
points on an undamaged fiber array (LE  
fiber is not fragmented) under the same  
nominal strain. For HE fibers, the axial force  
due to LE fiber fragmentation is 
E * A * (du„ dx) and the axial force in the LE 
fragment due to fragmentation 
is EA(du0 dx) . From the free body diagram,  
Figure 2, axial equilibrium for the LE fragment can, therefore, be written as, 

 

No Slip Between Fibers 
We assume that, given that no slip occurs at the contact surface, the shear flow at the contact line between two 
abutting fibers may be considered linearly proportional to the difference in the fibers' average axial displacements 
(Godfrey and Rossettos, 2001). For a contact line between an HE fiber and the LE fiber, we denote the proportionality 
constant k, and use k* for contact lines between two HE fibers. For the shear flow q1,0, the contact line is between an 
HE fiber and the LE fragment, so we write the shear flow as, 

 

where a positive shear flow occurs on fiber 0 when the displacement of fiber 1 exceeds that of fiber 0. 
The proportionality constants k and k* involve the shearing of fibers longitudinally due to surface tractions along the 
fiber-tofiber contact lines. Treating the fiber material as a homogenous solid, the stiffness constant k* will be 
proportional to the HE material’s shear modulus in the longitudinal-transverse plane, GLT. The constant k will involve 
the shear moduli of both fibers in a springs-in-series arrangement. Measurements of the shear modulus of a variety of 
textile fibers are tabulated in the book by Morton and Hearle (1975, p. 418, p. 428). These range from 0.33 to 1.6 
GPa. Physical reasoning suggests the value of k* should be somewhat less than the value of GLT for the HE fiber 
material, since the packed array of HE fibers may be regarded as a porous solid. 
In Figure 1, shaded fibers abutting the red and white fibers are also shown numbered to indicate the symmetry 
conditions. For example, in considering the shear flows acting on fiber 1, we note that fiber 1 has six abutters, 
therefore, the potential exists for six shear flows to act on it. However, two of the abutters (shown shaded and marked 
1) have by symmetry the same displacement as fiber 1, therefore, no shear flows arise along these contact lines. The 
shear flow arising from contact with the shaded fiber numbered 3 will by symmetry be equal in magnitude to the shear 
flow arising from the fiber 3 shown in white. Summing the shear flows acting on fiber 1, the equilibrium equation is 
written as, 



  

Equilibrium equations for fibers 2 through 5 may be derived in a similar manner. For fibers 4 and 5, on the outer ring 
of the unit cell, it is assumed that no shear flows arise from contact with fibers outside the unit cell boundary. For 
conciseness, only the final, non-dimensionalized form of the equilibrium equations for fibers 2 through 5 will be given 
here. 
Introduce dimensionless position 
coordinate ~ and displacements U„ defined by 

 

Putting Equation 2 into Equation 1 and Equations 4 into Equation 3, and non dimensional zing, using Equations 5, 
dimensionless equilibrium equations for fiber 0 (LE fragment) and fiber 1, are written as, 

  

respectively, where primes denote 
differentiation with respect to ξ. Similarly, the dimensionless equations for fibers 2 through 5 are written as, 
U2 ′′ + ′′ + ′′ +U1 − −6U2 +2U3+ U4 +2U5 = 0, 
U3′+ 2U1 + 2U2− 6U3+ 2U5 = 0, 
U4′′′′ + U2− 3U4 + 2U5 = 0, 
U5′′′′+ U2+ U3+ U4− 3U5= 0. (7) 
Frictional Slip Of The LE Fragment 
We assume that slip occurs between the LE fragment and the abutting HE fibers in a 
region near the LE fragment tip, 0 ≤ x < a, 
where a is less than l. The shear flow acting along each slipping contact line is denoted qs. Axial equilibrium of the LE 
fragment in 
the region 0 ≤ x < a is written as 

  

where the fragment slips relative to six abutting HE fibers. 
The interaction of yarn twist and remote tension on the yarn gives rise to lateral compression within the yarn. As in 
Godfrey and Rossettos (2001), we assume Amontons’ Law behavior at the slipping contact lines so that the contact 
line slip shear flow, qs, is proportional to the contact line compressive force per unit length. Since the compressive 
forces are induced by yarn tension, the slip shear flow is to a first approximation proportional to the nominal strain, ε . 
Godfrey and Rossettos (2001) showed that the slip shear flow in square-packed arrays could be estimated as, 

 
 
where µ is the coefficient of friction 
between slipping LE and HE fiber surfaces, 
d is the average fiber layer-to-layer spacing, E is the axial modulus of the fiber array where the array is smeared out 
into an effective homogeneous solid (units of 
force/length2), and η is a function of yarn 
surface helix angle and radial position of the fiber array within the yarn that determines the ratio of lateral compressive 



stress to axial stress on the fiber array. 
Using Equations 5, Equation 8 may be nondimensionalized, giving, 

 In the second of Equations 11 we have used Equation 9. The parameter Q is 
seen to involve only properties of the constituent fibers, properties of the smeared fiber array, the position of the array 
within the yarn and 
the yarn twist (through η). Therefore, Q maybe regarded as somewhat of a material property of the hybrid yarn. In the 
hexagonal array, the parameter d must be interpreted as a factor, having units of length, that relates the mean contact 
line compressive force/length to the lateral compressive stress in the fiber array. While Equation 11 suggests 
microstructural properties that are involved in Q, Q should be regarded as an empirical parameter, ultimately to be 
calibrated through appropriate experiments.For fiber 1, frictional slip occurs along its contact line with the center LE 
fragment, but it is assumed no slip occurs between it and its other three abutters. The dimensionless equilibrium 
equation may be obtained from the equation for the non-slipping region, the second of Equations 7, by replacing the 
terms arising from the elastic interaction with fiber  
(U0 − − U1) k k * , with +Q, representing the 
frictional slip shear flow acting on fiber 1 in the positive x-direction (the LE fragment slips in the + x-direction). 
Therefore,equilibrium of fiber 1 in the region 0 ≤ x < a 
may be written as, 

 



 

 

Load Contribution Of LE Fragment 

 

 

expected, longer fragments exhibit higher load contributions than shorter fragments. The hexagonal packing case 
exhibits higher LE fragment load contribution than the square packing case for given values of Q. Higher values of 
load contribution indicate better reinforcement of the yarn by the LE fragments. These results suggest that both the 
packing density, reflected here in our study of hexagonal versus square packing, and the parameter Q, are important 
material properties to consider in the design of blended yarns intended to support high loads during fragmentation. 
 



 Peak Fiber and Fragment Strains 
 When the fragmented fiber array is extended, local axial strains in each fiber/fragment distribute themselves such that 
the fiber array remains in equilibrium locally while exhibiting the prescribed global average strain of s . In the HE 
fibers, peak strains, greater than - , occur in the fibers adjacent to the fragment tip, i.e., fiber 1 at x = 0. In the LE 
fragments, peak strains occur at the fragment mid-point, x = L. The peak strains in the LE fragments will be less than - 
since a significant fraction of the fragment’s total displacement generally arises through slip of the fragment tip. 

 

 

Peak strains in the HE fibers and LE fragment are exhibited in Figures 5 and 6, respectively. For moderate to high 
values of Q, peak HE fiber strains are seen to be lower for hexagonal packing versus square packing, particularly for 
larger fragment sizes. At low values of Q, the regime where fricitional slippage effects dominate, peak HE fiber strains 
are the same for both packing schemes. LE fragment peak strains are higher for hexagonal as compared with square 
packing. 
  

 

 

Taken together, the results for peak fiber/fragment strains and LE fragment load contribution suggest that blended 
fiber arrays with increased packing density provide improved mechanical performance in post-fragmentation yarn 



extension. The LE fragment provides better reinforcement of the fiber array in the more densely packed hexagonal 
configuration. Since more densely packed fiber arrays do not lead to higher peak strains in the HE fibers, increased 
packing density is not expected to reduce the rupture strain of the yarn and may increase it somewhat for moderate to 
high Q values. Higher peak LE fragment strains in the hexagonal versus square packed array suggest that the 
progressive fragmentation of the LE fragment will proceed at a higher rate in more densely packed arrays. Therefore, 
we expect at a given yarn extension, more densely packed fiber arrays will exhibit shorter mean LE fragment lengths 
(the fragments have experienced a greater number of successive breaks) than less densely packed arrays. 
4. CONCLUSIONS 
We have modified a simple model representing the microstructure of a blended yarn undergoing axial extension for 
the assumption of hexagonal fiber packing. The present results have been compared to previous results for the 
assumption of square packing. Through this comparison, it has been shown that increased packing density provides 
for better reinforcement of the yarn by the LE fragments. In addition, fiber strain results suggest that blended yarns 
having more densely packed microstructures are likely to exhibit somewhat higher strains to complete rupture than 
blended yarns with less densely packed microstructures. 
  
 


